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ROADTRIPS: Case-Control Association Testing
with Partially or Completely Unknown
Population and Pedigree Structure

Timothy Thornton1 and Mary Sara McPeek2,3,*

Genome-wide association studies are routinely conducted to identify genetic variants that influence complex disorders. It is well known

that failure to properly account for population or pedigree structure can lead to spurious association as well as reduced power. We

propose a method, ROADTRIPS, for case-control association testing in samples with partially or completely unknown population and

pedigree structure. ROADTRIPS uses a covariance matrix estimated from genome-screen data to correct for unknown population and

pedigree structure while maintaining high power by taking advantage of known pedigree information when it is available. ROADTRIPS

can incorporate data on arbitrary combinations of related and unrelated individuals and is computationally feasible for the analysis

of genetic studies with millions of markers. In simulations with related individuals and population structure, including admixture, we

demonstrate that ROADTRIPS provides a substantial improvement over existing methods in terms of power and type 1 error. The

ROADTRIPS method can be used across a variety of study designs, ranging from studies that have a combination of unrelated individuals

and small pedigrees to studies of isolated founder populations with partially known or completely unknown pedigrees. We apply the

method to analyze two data sets: a study of rheumatoid arthritis in small UK pedigrees, from Genetic Analysis Workshop 15, and data

from the Collaborative Study of the Genetics of Alcoholism on alcohol dependence in a sample of moderate-size pedigrees of European

descent, from Genetic Analysis Workshop 14. We detect genome-wide significant association, after Bonferroni correction, in both studies.
Introduction

It is well known that problems can arise in case-control

genetic association studies when there is population struc-

ture.1 At its most basic, case-control association testing can

be thought of as a comparison of the allele (or genotype)

frequency distribution between cases and controls, and

markers that are not directly associated with the trait of

interest can be spuriously associated with the trait if

ancestry differences between cases and controls are not

properly accounted for. Similarly, failure to account for

population structure can also reduce power. To correct for

population structure in case-control studies with samples

of unrelated individuals, a number of methods have been

proposed, including genomic control (GC),2 structured

association,3 spectral analysis,4–8 and other approaches.9–13

However, many genetic studies include related individuals.

Several methods have been proposed for case-control asso-

ciation testing in related samples from a single population

with known pedigrees14–16 or with unknown or partially

known pedigrees.17 However, these methods might not

be valid in the presence of population heterogeneity. For

certain types of study designs, family-based association

tests such as the TDT18 and FBAT19 have been used to

protect against potential problems of unknown population

substructure. Family-based tests, however, are generally

less powerful than case-control association methods20,21

and are more restrictive because they typically require

genotype data for family members of an affected

individual. In contrast, case-control designs can allow,
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but do not require, genotype data for relatives of affected

individuals.

We address the general problem of case-control associa-

tion testing in samples with related individuals from struc-

tured populations. We do not put constraints on how the

individuals might be related, and we allow for the possi-

bility that the pedigree information could be partially

or completely missing. We propose a new method,

ROADTRIPS, where this name is inspired by the descrip-

tion of the method as a robust association-detection test

for related individuals with population substructure.

ROADTRIPS uses a covariance matrix estimated from

genome-screen data to simultaneously correct for both

population and pedigree structure. The method does not

require the pedigree structure of the sampled individuals

to be known, but when pedigree information is available,

the method can improve power by incorporating this

information into the analysis. ROADTRIPS is computation-

ally feasible for genetic studies with millions of markers.

Other features of ROADTRIPS include (1) appropriate

handling of missing data and (2) the ability to incorporate

both unaffected controls and controls of unknown pheno-

type (i.e., general population controls) in the analysis.

In order to compare ROADTRIPS to other methods, on

the basis of type 1 error and power, we simulate case-

control samples containing both related and unrelated

individuals with various types of population structure,

including admixture. We also apply ROADTRIPS to identi-

fication of SNPs associated with rheumatoid arthritis (RA

[MIM 180300]) in small UK pedigrees22 from Genetic
A; 2Department of Statistics, 3Department of Human Genetics, University of

Genetics. All rights reserved.
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Analysis Workshop (GAW) 15, and we apply it to identifi-

cation of SNPs associated with alcohol dependence (MIM

103780) in a sample of moderate-size pedigrees of Euro-

pean descent from the Collaborative Study of the Genetics

of Alcoholism (COGA) data23 of GAW 14.
Material and Methods

We first describe a class of testing procedures suitable for known

structure. Then we describe the ROADTRIPS method for extending

these tests to the contexts of unknown and partially known

structure.
Overview of Association Testing with Known

Structure
Consider the problem of testing for association of a genetic marker

with a particular phenotype in a sample of n genotyped individ-

uals. For simplicity, we assume that the marker to be tested is a

SNP, with alleles labeled ‘‘0’’ and ‘‘1.’’ (The extension to multiallelic

markers can be obtained as in previous work.16) Let Y ¼ (Y1, .

Yn)T where Yi ¼ 1⁄2 3 (the number of alleles of type 1 in individual

i), so the value of Yi is 0, 1⁄2 , or 1. We treat the genotype data on the

n individuals as random and the available phenotype information

as fixed in the analysis, an approach that is appropriate, for

example, with either random or phenotype-based ascertainment.

Under the null hypothesis of no association and no linkage

between marker and trait, we assume that the expected value of

Y is E0(Y) ¼ p1, where 1 is a column vector of 1s of length n

and p is a parameter representing the frequency of the type 1 allele.

In models incorporating population structure, p would typically

be interpreted as an ‘‘ancestral’’ allele frequency or some kind of

average allele frequency across subpopulations. We denote by

Var0(Y) ¼ S the n 3 n covariance matrix of Y under the null

hypothesis of no association. It is often convenient to write

S¼ s2J, where s2 is defined to be the variance of Y for an outbred

individual in the absence of population structure, and J accounts

for relatedness, inbreeding, and population structure. We use the

term ‘‘known structure’’ to refer to the case when the matrix J

is known. We always take s2 to be unknown and estimate it

from the sample. Denote by bs2 a suitable estimator of s2 (where

two examples of suitable estimators are given in the next subsec-

tion). Then, in the case of known structure, we consider test statis-

tics for association that have the rather general form

�
VTY

�2

�bs2VT JV
� (Equation 1),

where V is a fixed, nonzero column vector of length n such that

VT1 ¼ 0. Note that Var0(VTY) ¼ s2VTJV, so the denominator

in Equation 1 can be viewed as an estimator of Var0(VTY). In

a test for association, V would naturally include phenotype infor-

mation and could also include pedigree information. One could

include covariate information in V as well, although we do not

treat that situation in the present work. There are a number of

case-control association test statistics that have the general form

in Equation 1, including the Pearson c2 test, the Armitage trend

test,24 the corrected c2 test,15 the WQLS test,15 and the MQLS

test16 (details on how these tests can be written in the form of

Equation 1 are given in subsection Examples of Association Tests

with Known Structure). Under standard regularity conditions,
The America
the test statistic given in Equation 1 has an asymptotic c1
2 distri-

bution under the null hypothesis of no association and no linkage.
Estimation of s2 when Structure Is Known
In the context of Equation 1, when structure is known, we have

two general approaches for estimating s2 under the null hypoth-

esis. If we assume that, for an outbred individual in the absence

of population structure, HWE holds at the marker, then s2 ¼
1⁄2 p(1 � p), where p is the frequency of allele 1 at the SNP being

tested, and a reasonable estimator of s2 under this assumption is

bs2
1 ¼ 0:5bpð1� bpÞ, where bp is a suitable estimator of p, the

frequency of allele 1 at the SNP being tested. Examples of suitable

estimators of p are (1) the sample frequency, Y; (2) the best linear

unbiased estimator (BLUE),25 given by

bp ¼ �lT
J�1l

��1
lT

J�1Y (Equation 2);

and (3) a Bayesian estimator26 such as ðnY þ 0:5Þ=ðnþ 1Þ.
Alternatively, an approach to estimation of s2 that does not

assume s2 ¼ 0:5pð1� pÞ could be used. When J is known,

a reasonable estimator is

bs2
2 ¼ ðn� 1Þ�1

h
YT J�1Y�

�
lT

J�1l
��1�

lT
J�1Y

�2
i

(Equation 3),

which is RSS/(n � 1) for generalized regression of Y on 1, where

RSS is the residual sum of squares. Note that when J ¼ I, the

n 3 n identity matrix, e.g., with unrelated individuals in the

absence of population structure, then bs2
2 is just the sample vari-

ance of Y.

Examples of Association Tests with Known Structure
Corrected Pearson c2 and Armitage Trend Tests

In the standard Pearson c2 and Armitage trend tests for allelic asso-

ciation, one assumes that the individuals are unrelated with no

population structure, so that J ¼ I. A corrected version of the

Pearson c2 test has previously been described15 for the situation

when sampled individuals are related with all relationships

known, in which case J ¼ F, where F is the kinship matrix,

which is obtained as a function of the known pedigree informa-

tion and is given by

F ¼

0
BB@

1þ h1 2f12 . 2f1n

2f12 1þ h2 . 2f2n

« . . «
2fn1 2fn2 . 1þ hn

1
CCA (Equation 4),

where hi is the inbreeding coefficient of individual i, and fij is the

kinship coefficient between individuals i and j, 1 % i, j % n. We

propose to use this same choice of J in the corrected Armitage

test. (More generally, for either test, one might consider known

structure J that does not necessarily equal F.) In both tests,

one further assumes that every individual in the sample can be

classified as either case or control. In that context, let 1c be the

case indicator, i.e., the vector of length n whose ith entry is 1 if

individual i is a case and 0 if individual i is a control. Then both

the corrected Pearson c2 and corrected Armitage test statistics

are obtained as special cases of Equation 1 with the choice

V ¼ 1c �
nc

n
1 (Equation 5),

where nc is the number of case individuals among the n total indi-

viduals. (In the most general specification of the Armitage test for

genetic association, mean-zero, nonlinear functions of Y are
n Journal of Human Genetics 86, 172–184, February 12, 2010 173



allowed in place of VTY, but in practice, the test is almost always

performed with the V given in Equation 5.) The difference

between the two tests is in the estimation of s2. The corrected Pear-

son c2 test uses the estimator ŝ2
1 described in the previous subsec-

tion, with p̂ taken to be either Y or the BLUE given in Equation 2,

whereas the corrected Armitage test uses the estimator

ð1� n�1Þ ŝ2
2, where ŝ2

2 is given in Equation 3. In the special case,

F ¼ I, the corrected Pearson c2 and Armitage test statistics equal

the standard Pearson c2 and Armitage test statistics, respectively.

When we calculate the corrected Armitage test statistic, we actu-

ally use estimator ŝ2
2 instead of ð1� n�1Þ ŝ2

2. For the large values

of n typically encountered in human genetic studies, the differ-

ence between ŝ2
2 and ð1� n�1Þ ŝ2

2 is negligible. In the context of

complex trait mapping in samples of related individuals with

known pedigrees, the corrected c2 test has been demonstrated15,16

to have correct type 1 error, generally higher power than the WQLS

test, and generally somewhat lower power than the MQLS test.

However, with additional unknown population structure, we

would expect both the corrected Pearson c2 and corrected Armit-

age tests to have inflated type 1 error.

WQLS Test

The WQLS test15 was proposed in the context of related individuals

without additional population structure, in which case J ¼ F

given in Equation 4. The WQLS test statistic is formed from Equa-

tion 1 by taking

V ¼ F�11c � 1T
c F�11

�
1T

F�11
��1

F�11 (Equation 6).

This choice of V can be motivated by generalized least-squares

regression, because VTY is proportional to the estimated regres-

sion coefficient for 1c in the generalized least-squares regression

of Y on 1c with intercept. The WQLS test uses the estimator ŝ2
1 of

s2, where p̂ is taken to be the BLUE given by Equation 2. An alter-

native formulation could be obtained by using the estimator ŝ2
2 of

Equation 3.

In the context of trait mapping in samples of related individuals

with known pedigrees, the WQLS test generally has lower power16

than the corrected c2 and MQLS tests. Nonetheless, we include it in

the present work because the ROADTRIPS extension of the WQLS

(described in subsection Association Tests when Structure Is

Partially or Completely Unknown) is equivalent to the method,

recently proposed by Rakovski and Stram,13 for association testing

in the presence of hidden population structure and hidden relat-

edness. Thus, we include the ROADTRIPS extension of the WQLS

in our simulation studies to compare its power and type 1 error

to those of our proposed methods.

MQLS Test

In contrast to the preceding tests, the MQLS test16 allows three

possible values for an individual’s phenotype: ‘‘affected,’’ ‘‘unaf-

fected,’’ and ‘‘unknown,’’ where the label ‘‘unknown’’ is used to

represent unphenotyped individuals, e.g., general population

controls, or individuals who are deemed too young to have devel-

oped an age-related trait such as Alzheimer’s, whereas the label

‘‘unaffected’’ is reserved for true unaffecteds. As they have

different expected frequencies of predisposing alleles, the two

types of controls are treated differently in the analysis. Further-

more, whereas the preceding tests use the phenotype information

only for individuals who have genotype data at the marker being

tested, the MQLS also uses the phenotype information for individ-

uals with missing genotype data at the marker being tested,

provided that those individuals have a sampled relative who is

genotyped at the marker.
174 The American Journal of Human Genetics 86, 172–184, February
As a result of these considerations, instead of using the pheno-

type vector 1c that is used in the preceding four tests, the MQLS

uses the vector A¼ (AN
T, AM

T)T, which contains more information

than 1c. Here, AN is the phenotype vector for the n individuals

with nonmissing genotype data at the marker being tested, and

AM is the phenotype vector for the m individuals with missing

genotype data at the marker being tested, where individual i’s

phenotype is coded as Ai ¼ 1 if i is affected, �k/(1 – k) if i is unaf-

fected, and 0 if i is of unknown phenotype, where 0 < k < 1 is

a constant that represents an external estimate of the population

prevalence of the trait for a suitable reference population. (The

prevalence estimate is permitted to be very rough; the MQLS test

is valid for arbitrary fixed k.)

The MQLS test was proposed in the context of related individuals

without additional population structure, in which case J¼F, the

n 3 n matrix given in Equation 4. In order to incorporate the infor-

mation of AM into the MQLS test, one also needs the n 3 m matrix,

FN,M, whose (i, j)th entry is 2fij, where fij is the kinship coefficient

between the ith nonmissing and jth missing individuals. The MQLS

test statistic can be obtained from Equation 1 by choosing

V ¼ AN þF�1FN,MAM �
�
AN þF�1FN,MAM

�T
1
�
1T

F�11
��1

F�11

(Equation 7)

and using the estimator ŝ2
1 of s2, where p̂ is taken to be the BLUE

given by Equation 2. An alternative formulation could be obtained

by using the estimator ŝ2
2 of Equation 3. Two different justifica-

tions for the choice of V in Equation 7 have previously been

described; one16 is based on maximizing the noncentrality param-

eter among all tests of the type in Equation 1 when a two-allele

model in outbreds (or an additive model in inbreds) with effect

size tending to 0 is used, and the other27 is based on a relationship

with the score test for the retrospective likelihood based on logistic

regression with an additive model. In the context of complex trait

mapping in samples of related individuals with known pedigrees,

the MQLS test has been demonstrated16 to have generally higher

power than both the corrected c2 and WQLS tests. However, with

additional unknown population structure, we would expect the

MQLS test to have inflated type 1 error.

Outline of ROADTRIPS Approach for Unknown

Structure
The idea behind ROADTRIPS is to extend tests of the form given in

Equation 1 to the situation when there could be unknown popu-

lation structure and/or cryptic relatedness in the sample. To do

this, we use genome-screen data to form an appropriate estimator

Ĵ of J and consider various tests of the form

�
VTY

�2

�bs2VT ĴV
� (Equation 8),

where we can allow V to take into account any known pedigree

information, in addition to phenotype information, while simul-

taneously accounting for pedigree errors and additional unknown

structure through Ĵ. This approach allows us to easily adapt to

different patterns of missing genotypes at different tested markers,

by including only the rows and columns of Ĵ (and the entries of

V and Y) that correspond to the individuals genotyped at the

particular marker being tested. In what follows, we first describe

the population genetic modeling assumptions that underlie our

estimation and testing procedures, then we describe the estimators

Ĵ and ŝ2.
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Population Genetic Modeling Assumptions
The modeling assumptions we make are weak and are satisfied by

commonly used models of population structure and commonly

used models for related individuals. We consider S SNPs in

a genome screen, and we generalize the notation of the previous

subsections to a set of S SNPs by letting Ys be the genotype vector

corresponding to SNP s, namely, Ys ¼ (Y1
s, ., Yn

s)T, s ¼ 1, ., S,

where Ys
i ¼ 1⁄2 3 (the number of alleles of type 1 at SNP s in indi-

vidual i). Our modeling assumption on the null mean, generalized

from the preceding subsections, can be stated as

E0ðYsÞ ¼ ps1, for 1 % s % S (Equation 9).

We make the following assumption regarding the null covari-

ance matrix:

Var0ðYsÞh Ss ¼ s2
s J, for 1 % s % S (Equation 10),

where J is an arbitrary, positive semidefinite matrix, and ss
2 >

0 for all 1 % s % S. Here, the key point is that the correlation struc-

ture, captured by J, is assumed to be the same across SNPs,

whereas the scalar multiplier ss
2 is allowed to vary across SNPs.

(Of course, this presumes that the same individuals are genotyped

at all SNPs. When some individuals have missing genotypes at SNP

s, the entries of Ys and the rows and columns of J that correspond

to individuals with missing genotypes would be deleted.)

Note that J and ss
2 are defined only up to a constant multiple,

in the sense that cJ and c�1ss
2 would give the same value of Ss. By

convention, ss
2 is usually chosen to be the variance of an outbred

individual in the absence of population structure. We now give

two examples of population genetic models that satisfy our

assumptions.
Example 1: Related Individuals without Additional

Population Structure
An example of a simple model that satisfies the assumptions of the

previous subsection is the model for related individuals in an

unstructured population. In this model, individuals in the sample

can be related by pedigrees, where the pedigree founders are

assumed to be independently drawn from a population that is in

Hardy-Weinberg equilibrium (HWE). Mendelian inheritance is

assumed in the pedigrees. In this case, it has previously been

shown15 that Equations 9 and 10 hold, where ps is interpreted as

the allele frequency of SNP s in the population from which the

founders are drawn, s2
s ¼ 0:5psð1� psÞ, and J ¼ F, where F is

the kinship matrix given in Equation 4.

If the pedigrees are fully known, then the structure matrix J is

known, but if some genealogical information is missing, then J

might be partially or completely unknown.
Example 2: Balding-Nichols Model with Admixture
In the Balding-Nichols model6,28,29 with admixture, we let ps

denote the ‘‘ancestral’’ allele frequency at SNP s and let qk
s denote

the allele frequency of SNP s in subpopulation k, 1 % k % K. We

assume that the qk
s are random variables that are independent

across both k and s, with qk
s ~Beta(ps(1 � fk)/fk, (1 � ps)(1 � fk)/

fk), where fk R 0 can be viewed as Wright’s standardized measure

of variation30 for subpopulation k. For SNP s, let qs ¼ (q1
s, .,

qK
s)T denote the vector of subpopulation-specific allele frequen-

cies. Individual i is assumed to have admixture vector ai ¼
(ai1, ., aiK)T, where aik R 0 for all i and k, and

PK
k¼1aik ¼ 1 for

all i. Conditional on the random variable qs, the two alleles of
The America
individual i at SNP s are assumed to be independent, identically

distributed (i.i.d.) Bernoulli(ai
Tqs) random variables. In the Bald-

ing-Nichols model with admixture, Equations 9 and 10 hold,

where ps is interpreted as the ‘‘ancestral’’ allele frequency,

s2
s ¼ 0:5psð1� psÞ, and the entries of J are given by

Jii ¼ 1þ
PK

k¼1a2
ikfk and Jij ¼ 2

PK
k¼1aikajkfk if i s j. In this context,

the population structure captured by J would typically be

unknown.
Estimation of the Matrix J

The matrix J is a function of the genealogy of the sampled

individuals, where genealogy is broadly interpreted as including

both population structure and the pedigree relationships of close

relatives. The matrix J will be unknown when there is hidden

population structure and/or cryptic relatedness in the sample.

We allow a completely general form for J, assuming only that it

is positive semidefinite (psd). When genome-screen data are avail-

able on the sampled individuals, this information can be used to

estimate J. For any pair of individuals i and j, let Sij be the set

of markers for which both i and j have nonmissing genotype

data. Then if the allele frequencies ps were known, and if ss
2 ¼

0.5ps(1 � ps) as in Examples 1 and 2, an unbiased estimator of

Jij would be

~Jij ¼
1

j Sij j
X
s˛Sij

�
Ys

i � ps

��
Ys

j � ps

�
:5ps

�
1� ps

� (Equation 11),

where jSijj is the number of elements of Sij. If one assumed, for

example, that genotypes at different SNPs were independent

with jSijj/N and ps known and that ss
2 ¼ 0.5ps(1 � ps) held at

all but a finite number of SNPs, then Equation 11 would provide

a consistent estimator of Jij. However, ps will generally not be

known, so we propose to further restrict Sij to those markers

that are polymorphic in the sample; let p̂s ¼ Ys, the observed

proportion of type 1 alleles in the sample at marker s; and use

estimator

Ĵij ¼
1

j Sij j
X
s˛Sij

�
Ys

i � p̂s

��
Ys

j � p̂s

�
:5p̂s

�
1� p̂s

� (Equation 12).

The estimator Ĵ of Equation 12 is essentially the same as the

estimated covariance matrix used in EIGENSTRAT.6 An alternative

estimator could be obtained by using the sample variance of Ys in

the denominator instead of 0:5p̂sð1� p̂sÞ.
If every sampled individual were genotyped at the same

markers, with no missing genotypes, then Ĵ would be psd and

singular, with Ĵ1 ¼ 0, i.e., 1 would be in the null space of Ĵ.

With missing genotypes, it is possible for Ĵ to be nonsingular

and non-psd. The fact that Ĵ might be non-psd is not, in itself,

particularly problematic from a practical point of view, provided

VT ĴV > 0 for the chosen V in Equation 8 and assuming this

provides a sufficiently accurate estimator of Var0(VTYs)/s2
s. The

fact that Ĵ might be singular (e.g., in the case of no missing

data) or close to singular, with Ĵ orthogonal or approximately

orthogonal to the vector 1, means that in those cases, one would

not be able to directly plug Ĵ into formulae such as Equations 2, 3,

6, and 7. This is discussed further in the next subsection. With

substantially different amounts of missing data at different

markers, as in the RA and COGA data sets analyzed in the Results

section, the matrix Ĵ might be nonsingular and so could be

directly used in Equations 2, 3, 6, and 7.
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Table 1. Weight Vectors V for the ROADTRIPS Statistics

Statistic V

Rc 1c � nc

n 1

RM AN þ F�1FN,MAM � (AN þ F�1FN,MAM)T1(1TF�11)�1F�11

RMNI AN � AN1

RWNI Ĵ�1c

Ĵ� is the generalized inverse of Ĵ and AN is the average of the elements of AN.
Estimation of s2 when Structure Is Unknown
In this subsection, we drop the subscript s and use notations Y, p,

and s2 for the SNP being tested; e.g., we assume E0(Y) ¼ p1 and

Var0(Y) ¼ S ¼ s2J. As we did for the case of known structure,

we consider two general approaches to estimation of s2 when

structure is unknown. The first approach is to take estimators of

the form ŝ2
1 ¼ 0:5p̂ð1� p̂Þ, where p̂ is a suitable estimator of p.

When Ĵ is orthogonal or approximately orthogonal to the vector

1, we cannot plug it into Equation 2 to obtain the BLUE of p. (Note

that use of the Moore-Penrose generalized inverse Ĵ� in place of

Ĵ�1 also does not work, because Ĵ� is also orthogonal or approx-

imately orthogonal to 1, so plugging into Equation 2 would result

in both numerator and denominator being exactly or approxi-

mately zero.) Instead, we use the more stable estimator p̂ ¼ Y,

the sample allele frequency. Thus, our first estimator becomes

ŝ2
1 ¼ 0:5Yð1� YÞ (Equation 13).

As we did in the case of known structure, we also consider an

estimator of s2 that does not assume s2 ¼ 0:5pð1� pÞ at the SNP

being tested. When Ĵ is orthogonal or approximately orthogonal

to the vector 1, we replace Equation 3 by

ŝ2
2 ¼ ðn� 1Þ�1YT Ĵ�Y (Equation 14),

where Ĵ� is the Moore-Penrose generalized inverse of Ĵ.
Association Tests when Structure Is Partially or

Completely Unknown
We apply Equation 8 to extend association tests developed for the

situation of known structure (as described in subsection Examples

of Association Tests with Known Structure) to association tests

that are appropriate for situations of partially or completely

unknown structure. We call the tests based on Equation 8 the

ROADTRIPS versions of the corresponding tests given by Equation

1, and we now give several examples. Table 1 gives the weight

vector for each statistic defined below.

Rc1 and Rc2, the ROADTRIPS Versions of the Corrected c2 and Corrected

Armitage Tests

To extend the corrected c2 and corrected Armitage tests to the situ-

ation of unknown structure, we apply Equation 8 with V given in

Equation 5 and Ĵ given in Equation 12. We define Rc1 to be the

ROADTRIPS version of the corrected c2 test, where this is obtained

by using ŝ2
1 given in Equation 13, and we define Rc2 to be the

ROADTRIPS version of the corrected Armitage test, where this is

obtained by using ŝ2
2 given in Equation 14. When all SNPs have

the same pattern of missing genotypes, we expect Rc2 to perform

similarly to GC, because in this case, both Rc2 and GC are equiv-

alent to correcting all the Armitage c2 statistics across the genome

by a common factor, though this factor differs between the two

methods. However, when different SNPs have different rates of

missing genotypes, we expect the Rc2 statistic to do better than

GC, in terms of both type 1 error and power, because the Rc2

statistic allows different SNPs to have different correction factors

appropriate to the level of genotype information available,

whereas GC applies the same correction factor to all SNPs.

RM, the ROADTRIPS Version of MQLS when Structure Is Partially Known

As the MQLS is generally the most powerful of the statistics for

complex trait mapping when structure is known,16 we expect

the ROADTRIPS version of MQLS to be powerful when structure is

unknown. We consider separately the cases of partially known

structure and completely unknown structure. An example of
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partially known structure occurs when reliable pedigree informa-

tion on sampled individuals is available, but one wants to allow

for the possibility of additional cryptic relatedness or unknown

population structure not captured by the pedigree information.

In the context of partially known structure, we compute the

matrix F of Equation 4 as a function of the known pedigree infor-

mation. At the same time, we also calculate the estimator Ĵ in

Equation 12 as before, with the expectation that it will capture

the full structure in the data, including structure not explained

by F. Then we obtain RM, the ROADTRIPS version of the MQLS

test when structure is partially known, by applying Equation 8

with V given in Equation 7. The idea is that we create a powerful

test by using the known pedigree structure given in F to obtain

weights V that will be optimal16 when J ¼ F. Then we preserve

the validity of the test in the presence of additional structure,

not captured by F, through use of the estimator Ĵ in the denom-

inator of Equation 8. As we did for the Rc test, we could add

subscripts 1 and 2 to the name of the test to distinguish the use

of estimators ŝ2
1 and ŝ2

2, given in Equations 13 and 14, respectively.

RMNI, the ROADTRIPS Version of MQLS when Structure Is Completely

Unknown

For the case of completely unknown structure, we define the RMNI

test, which is a ROADTRIPS version of the MQLS, where ‘‘NI’’ stands

for ‘‘no information.’’ We form RMNI from Equation 8, where we

take V ¼ AN � AN1, where AN is the sample average of the

elements of AN. This choice of V is the natural analog to Equation

7 when Ĵ is used in place of F, for the case when Ĵ is orthogonal

to the 1 vector and where we ignore the contribution of AM. The

reason we ignore the contribution of AM is that the expected gain

by including this term for individuals not known to be related is

not high enough to justify the computational cost involved in

obtaining the inverse or generalized inverse of Ĵ. (Note that Ĵ

tends to be much more costly to invert than F, because in typical

applications, F is block-diagonal with small blocks.) We could add

subscripts 1 and 2 to the name of the test to distinguish the use of

estimators ŝ2
1 and ŝ2

2 given in Equations 13 and 14, respectively.

Note that when the amount of missing data varies across SNPs,

the matrix Ĵ might be nonsingular, and there is the possibility

of using Equation 7 with Ĵ plugged in for F. For instance, this

occurs in both the data sets we analyze in Results. In this case,

one might still choose to ignore the information provided by

AM for the computational reasons mentioned.

RWNI, the ROADTRIPS Version of WQLS when Structure Is Completely

Unknown

We form RWNI from Equation 8, where we take V ¼ Ĵ�1c, which

is the natural analog to Equation 6 for the case when Ĵ is orthog-

onal to the 1 vector. If we use estimator ŝ2
2ðn� 1Þ=ðn� 2Þ of s2,

then we obtain the test recently proposed by Rakovski and

Stram.13 (In our simulation study, we actually use estimator ŝ2
2

instead of ŝ2
2ðn� 1Þ=ðn� 2Þ, but the difference is completely negli-

gible for the size of n we consider.)
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Table 2. Pedigree Configuration Types Used in Simulations

Type Naf Nun Genotyped Individuals

1 4 12 Unaffected sib pair and their unaffected first cousin

2 5 11 1 affected parent, 2 affected offspring

3 6 10 1 aff. parent, 2 aff. offspr., unaff. sib pair who are 1st
cousins to the latter

4 4 12 1 affected parent with 2 affected and 1 unaffected
offspring

5 5 11 1 affected and 2 unaffected sibs, unaffected aunt and
her affected spouse

6 6 10 1 aff. and 1 unaff. parent with 2 unaff. offspr., 2 other
affecteds

Naf and Nun are the total numbers of affected and unaffected individuals in the
pedigree, respectively, among whom only the indicated individuals are geno-
typed.
GAW 15 Rheumatoid Arthritis Data
We apply ROADTRIPS to perform association analysis of RA data

provided for GAW 15 by a UK group led by Jane Worthington and

Sally John (these data are described in detail elsewhere).22 Data

are available on 157 nuclear families, where 156 of these have at

least two affected individuals. Individuals were diagnosed as

affected according to the American College of Rheumatology

(ACR) criteria. There are 550 individuals with available genotype

data. After exclusion of 2 duplicate individuals and 4 outlier indi-

viduals who have estimated inbreeding coefficients more than 3

standard deviations (SDs) above the average (where the estimated

inbreeding coefficient of individual i is taken to be Ĵii � 1), there

are 339 affected individuals, 198 unaffected controls, and 7 con-

trols of unknown phenotype in the analysis. The data set includes

10,156 autosomal SNPs that passed quality control filters. We

exclude 285 SNPs that are not polymorphic (minor allele frequency

less than 0.01). The remaining 9871 SNPs are tested for association.

GAW 14 COGA Data
We apply ROADTRIPS to identify SNPs associated with alcohol

dependence in data provided by the COGA for GAW 14.23 These

data were previously analyzed with association methods that

assume known structure.16 There are a total of 1614 individuals

from 143 pedigrees, with each pedigree containing at least three

affected individuals. We include in our analysis only those individ-

uals who are coded as ‘‘white, non-Hispanic.’’ We designate as

cases those individuals who are affected with ALDX1 or who

have symptoms of ALDX1, where ALDX1 is defined to be DSM-

III-R alcohol dependence with the Feighner Alc Definite pheno-

type. By these criteria, there are 830 cases with available SNP

data. We designate as ‘‘unaffected controls’’ those individuals

who are labeled as ‘‘pure unaffected,’’ and we designate as

‘‘controls of unknown phenotype’’ those individuals who are

labeled as ‘‘never drank alcohol.’’ Among individuals with avail-

able SNP data, these criteria result in 187 unaffected controls

and 13 unknown controls. The data set includes 10,810 autosomal

SNPs. We exclude 403 SNPs that are not polymorphic and analyze

the remaining 10,407 SNPs.

Results

Simulation Studies

We perform simulation studies, in which population struc-

ture and related individuals are simultaneously present in

the case-control sample, in order to compare the perfor-

mance of ROADTRIPS to that of previously proposed asso-

ciation methods that correct in some way for either popu-

lation structure or related individuals or both. The

methods to which we compare ROADTRIPS are GC,

FBAT, the method of Rakovski and Stram,13 EIGENSTRAT,

MQLS, and the corrected Armitage c2 test. We also include

the standard (uncorrected) Armitage test in the type 1 error

study. We simulate four different settings of population

structure, including admixture, and two different settings

of relationship configuration, where the latter refers to

pedigree relationships among sampled individuals.

Relationship Configurations

Both relationship configurations 1 and 2 include 100 unre-

lated affected individuals, 400 unrelated unaffected indi-
The America
viduals, and individuals sampled from 120 outbred,

three-generation pedigrees, where each pedigree has a total

of 16 individuals, the phenotypes of all individuals in the

pedigrees are observed, and genotypes are observed for

only a subset of individuals in each pedigree. We sample

six types of these pedigrees; the types are described in

Table 2. Relationship configuration 1 has 40 pedigrees of

type 1, 40 of type 2, and 40 of type 3, as well as 100 unre-

lated affected and 400 unrelated unaffected individuals.

Relationship configuration 2 contains all six types of

pedigrees in Table 2, with 20 of each type, and it also

contains 100 unrelated affected and 400 unrelated unaf-

fected individuals.
Population Structure Settings

Each simulation setting specifies a particular relationship

configuration combined with a particular setting of popu-

lation structure. Each setting of population structure is

a special case of the Balding-Nichols model with admixture

described in Example 2, in which we take fk ¼ 0.01 for

every subpopulation. Population structure 1 has individ-

uals sampled from two subpopulations, with 60% of the

pedigrees and affected unrelated individuals sampled

from subpopulation 1 and the remaining 40% of the pedi-

grees and affected unrelated individuals sampled from

subpopulation 2. Among the unrelated unaffecteds, 40%

are sampled from subpopulation 1 and 60% from subpop-

ulation 2. Population structure 2 is similar to population

structure 1, except that the proportions 60% and 40% are

replaced by 80% and 20%, respectively. Population struc-

ture 3 is similar to population structure 1, except that there

are three subpopulations, with all of the unrelated unaf-

fecteds sampled from subpopulation 3. Population struc-

ture 4 has individuals sampled from an admixed popula-

tion, formed from two subpopulations. Individuals in the

admixed population are assumed to have i.i.d. admixture

vectors of the form (a, 1 � a), where a is a Uniform(0,1)

random variable.
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Table 3. Empirical Type 1 Error, at Level 0.0001, in the Presence of Both Related Individuals and Population Structure

Empirical Type 1 Error of Testsa

Settingb Rc or RMNI RM RWNI GC EIG MQLS Corr Arm Arm

(1,1) 0.00009 0.00004 0.00011 0.00007 0.00118 0.00027 0.00018 0.00202

(1,2) 0.00011 0.00012 0.00011 0.00010 0.00059 0.00043 0.00016 0.00073

(2,1) 0.00008 0.00012 0.00010 0.00004 0.00116 0.01690 0.00485 0.01970

(2,2) 0.00013 0.00015 0.00012 0.00005 0.00054 0.02281 0.00723 0.01375

(3,1) 0.00010 0.00010 0.00010 0.00007 0.00155 0.06752 0.02409 0.06094

(3,2) 0.00015 0.00012 0.00008 0.00008 0.00058 0.08464 0.03189 0.05028

(4,1) 0.00007 0.00011 0.00012 0.00007 0.00086 0.00056 0.00032 0.00277

(4,2) 0.00008 0.00007 0.00012 0.00012 0.00036 0.00028 0.00019 0.00069

Empirical type 1 error rates are calculated based on 100,000 simulated random SNPs. Rates that are significantly different from the nominal 0.0001 level are in
bold. Rc and RMNI are equivalent statistics for all the settings shown. For the ROADTRIPS statistics, the ŝ2

2 of Equation 14 is used.
a Abbreviations of test names are genomic control (GC), EIGENSTRAT with outlier removal (EIG), corrected Armitage c2 (Corr Arm), and Armitage trend test (Arm).
b Setting (i, j) denotes population structure setting i and relationship configuration setting j.
Within a given setting of population structure, to simu-

late the unrelated individuals needed in relationship

configurations 1 and 2, we first simulate genotypes accord-

ing to the chosen setting of population structure, simulate

phenotypes conditional on genotypes, and then randomly

ascertain 100 affected and 400 unaffected individuals. To

sample particular pedigree types within a given setting of

population structure, we first simulate genotypes for pedi-

gree founders according to the chosen setting of popula-

tion structure, drop alleles down the pedigree, simulate

phenotypes conditional on genotypes, and then do

rejection sampling to obtain 100 replicates of each of the

pedigree configuration types. Then, in the simulations,

pedigrees of each type are sampled with replacement

from the 100 previously obtained replicates of that pedi-

gree type.

Random and Causal SNPs

We use a trait model that has two unlinked causal SNPs

(which we call ‘‘SNP 1’’ and ‘‘SNP 2’’) with epistasis

between them.16 The ancestral frequencies of the type 1

alleles at SNPs 1 and 2 are taken to be 0.1 and 0.5, respec-

tively. Individuals with at least one copy of allele 1 at SNP 1

and at least one copy of allele 1 at SNP 2 have a penetrance

of 0.3. All other individuals have a penetrance of 0.05. In

the power studies, association is tested with SNP 2. In

contrast, ‘‘random’’ SNPs are assumed to be unlinked and

unassociated with the trait, and their ancestral allele

frequencies are obtained as i.i.d. draws from a uniform

(0.1, 0.9) distribution.

Assessment of Type 1 Error

For each of the eight combinations of population structure

and relationship configuration, we generate genotype data

for 100,000 random SNPs that are neither linked nor asso-

ciated with the trait, and we test each of them for associa-

tion at the 0.0001 level, using various test statistics. In
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Table 3, for each test statistic, we report the empirical

type 1 error, which we calculate as the proportion of simu-

lations in which the test statistic exceeds the c1
2 quantile

corresponding to nominal type 1 error level 0.0001. The

statistics compared are the four ROADTRIPS statistics,

Rc2, RM2, RMNI2, and RWNI2, where the subscript ‘‘2’’

denotes use of the estimator ŝ2
2 of Equation 14; GC;

EIGENSTRAT; the MQLS; the corrected Armitage c2; and

the uncorrected Armitage trend test. Note that because

there are only two types of controls, the Rc2 and RMNI2

tests are identical. The method of Rakovski and Stram13

corresponds to the ROADTRIPS statistic RWNI2, which is

included in the comparison. The correct type 1 error of

FBAT has been established previously.31 Using an exact

binomial calculation, we determine that empirical type 1

error rates falling in the range of 0.00004–0.00016 are

not significantly different from the nominal 0.0001 level.

For GC and all of the ROADTRIPS statistics, empirical

type 1 error is not significantly different from the nominal

level. In contrast, type 1 error is inflated for EIGENSTRAT,

MQLS, the corrected Armitage c2, and the Armitage trend

test. This is to be expected, because these tests either (1)

correct for related individuals but not for population

structure (MQLS, corrected Armitage c2), (2) correct for

population structure but not for related individuals

(EIGENSTRAT), or (3) correct for neither (Armitage trend

test). In particular, the top principal components in

EIGENSTRAT are not able to capture the complicated

covariance structure due to the related individuals in the

samples. The results for EIGENSTRAT in Table 3 are ob-

tained with the default setting of ten principal compo-

nents and with outlier removal. The results without outlier

removal and with different numbers of principal compo-

nents are similar (results not shown). We also performed

all the ROADTRIPS tests with variance estimator ŝ2
1 of

Equation 13 instead of ŝ2
2 and obtained nearly identical

empirical type 1 error rates (results not shown).
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Table 4. Empirical Type 1 Error at Level 0.0001 when Genotypes
are Missing at Random in the Presence of Both Related Individuals
and Population Structure

Empirical Type 1 Error

Population
Structure

Relationship
Configuration

Rc2 Genomic
Control

2 1 0.00008 0.00031

2 2 0.00007 0.00036

3 1 0.00006 0.00057

3 2 0.00013 0.00058

Empirical type 1 error rates are calculated based on 100,000 simulated random
SNPs. Rates that are significantly different from the nominal 0.0001 level are in
bold.

Table 5. Power to Detect Association in the Presence of Both
Related Individuals and Population Structure

Population
Structure

Power (Standard Error)

Rc or RMNI RM RWNI GC FBAT

1 0.79
(0.006)

0.94
(0.003)

0.59
(0.007)

0.78
(0.006)

0.0012
(0.0005)

2 0.42
(0.007)

0.48
(0.007)

0.36
(0.007)

0.43
(0.007)

0.0016
(0.0006)

4 0.70
(0.007)

0.80
(0.006)

0.48
(0.007)

0.70
(0.007)

0.0002
(0.0002)

Power is assessed at significance level 0.0001 on the basis of 5000 simulated
replicates. The highest power for each simulation setting is in bold. Relation-
ship configuration 2 is used in each case. Rc and RMNI are equivalent statistics
for all the settings shown. For the ROADTRIPS statistics, the ŝ2

2 of Equation 14
is used.
Type 1 Error with Missing Genotypes: Rc2 and GC

When all SNPs have the same pattern of missing genotypes,

we expect Rc2 to perform similarly to GC, because in this

case, both Rc2 and GC are equivalent to correcting all the

Armitage c2 statistics across the genome by a common

factor, though this factor differs between the two methods.

However, when different SNPs have different rates of

missing genotypes, we expect the Rc2 statistic to have better

control of type 1 error than GC, because the Rc2 statistic

allows different SNPs to have different correction factors

appropriate to the level of genotype information available,

whereas GC applies the same correction factor to all SNPs.

To assess the magnitude of this effect, we perform a simu-

lation study under four different settings of population

structure and relationship configuration, given in columns

1 and 2 of Table 4. For each combination of settings, geno-

type data are generated for 100,000 random SNPs that are

neither linked nor associated with the phenotype. The

proportions of individuals with missing genotype data at

different SNPs are taken to be i.i.d. random variables drawn

from a Beta(3, 12) distribution, which has a mean of 0.2

and a SD of 0.1. Given the proportion of missing genotypes

at a marker, the individuals whose genotypes will be set to

missing for that marker are chosen uniformly at random

from the sample.

The empirical type 1 error rates for Rc2 and GC are given

in Table 4. GC has inflated type 1 error for all of the simu-

lation settings, because of undercorrection of test statistics

from SNPs that have relatively low levels of missing geno-

types, whereas the empirical type 1 error for Rc2 is not

significantly different from the nominal 0.0001 level.

The results illustrate that ROADTRIPS is not only robust

to cryptic population and pedigree structure, but also to

varying rates of randomly missing genotype data. This

results from the fact that the entire empirical covariance

matrix is estimated in ROADTRIPS, so when some individ-

uals have missing genotype data at the SNP being tested,

the corresponding rows and columns can be deleted

from the empirical covariance matrix, allowing one to

obtain a variance estimator that accounts for missing geno-

type data at the marker being tested.
The America
Power Comparison

We assess power to detect association in the presence of

population and pedigree structure only for those tests

that maintain correct nominal type 1 error, namely the

four ROADTRIPS tests, FBAT, and GC (although, as can

be seen in Table 4, the type 1 error of GC might not be

correct when the rate of missing genotype data varies

across markers). The simulations are performed with rela-

tionship configuration 2 under each of the four different

settings of population structure. For each setting, 5000

simulated replicates are performed, and SNP 2 of the trait

model is tested for association with the trait by each

method. Table 5 reports power for each statistic for settings

1, 2, and 4 of population structure. Here, power is calcu-

lated as the proportion of simulations for which the

statistic exceeds the c1
2 quantile corresponding to

nominal type 1 error level 0.0001. Power for population

structure 3 is close to 0 for all of the statistics (data not

shown). The ROADTRIPS statistics are all calculated with

estimator ŝ2
2 of Equation 14. The FBAT and RM methods

are given the information of the correct pedigree structure,

but not the population structure. The FBAT statistic is

calculated with offset value set equal to the prevalence,

and the RM statistic is calculated with k set equal to the

prevalence. As expected, the RM test is the most powerful

in all settings, because it uses the known pedigree informa-

tion to incorporate phenotype information about relatives

with missing genotype data, and it corrects for additional

unknown population structure by means of the empirical

covariance matrix. In contrast, the FBAT test, which was

given all the same information as the RM test, performs

very poorly in these simulations, because it is not able to

incorporate the data on the 500 unrelated individuals,

and it is also not able to incorporate the data from pedigree

types 1, 2, and 3, because they do not meet the FBATcriteria

for ‘‘informative families.’’ If we assume that no pedigree

information is available, then the Rc, RMNI, and GC tests

all give identical or almost identical power, assuming that

all markers have comparable amounts of missing genotype

data. When different SNPs have different amounts of
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Table 6. Power to Detect Association with Related Individuals in
the Absence of Population Structure

Power (Standard Error)

Rc or RMNI RM RWNI GC FBAT MQLS Corr Arm

0.90
(0.004)

0.98
(0.002)

0.81
(0.006)

0.91
(0.004)

0.0002
(0.0002)

0.98
(0.002)

0.90
(0.004)

Power is assessed at significance level 0.0001 on the basis of 5000 simulated
replicates of relationship configuration 2 with no population structure. The
highest power is in bold. Rc and RMNI are equivalent statistics in this simulation
setting. For the ROADTRIPS statistics, the ŝ2

2 of Equation 14 is used. Abbrevia-
tions of test names are genomic control (GC) and corrected Armitage c2

(Corr Arm).

Table 7. Rheumatoid Arthritis Data Results: SNPs with p Value
<0.00005 for at Least One of the Four Tests

Chr Marker Pos. (cM) NCA NCO p

p Value

Rc RM GC FBAT

11 snp264363 105.57721 208 133 0.86 4.7e-3 5.2e-7a 1.7e-2 1.2e-2

9 snp152076 77.047858 267 162 0.92 3.0e-2 5.4e-7a 1.1e-1 9.9e-3

11 snp547632 63.954804 230 135 0.80 1.2e-6a 6.2e-2 1.8e-4 3.0e-1

3 snp151721 114.80384 279 174 0.84 2.8e-4 2.2e-6 6.8e-4 3.0e-3

18 snp511091 107.60685 219 130 0.57 4.2e-2 1.1e-5 6.6e-2 6.6e-2

14 snp51741 68.2942 298 188 0.95 1.4e-3 1.2e-5 1.3e-3 1.5e-2

15 snp66639 51.864772 296 187 0.97 1.5e-5 1.0e-2 1.4e-4 NA

3 snp71651 40.817259 188 118 0.74 3.5e-2 1.8e-5 6.3e-2 3.6e-2

4 snp570108 66.453602 224 142 0.71 5.1e-2 3.9e-5 1.2e-1 2.4e-1

8 snp261673 67.427701 192 131 0.61 2.9e-1 4.6e-5 4.0e-1 3.7e-1

The chromosome (Chr), the name of the marker (Marker), the position of the
marker on the chromosome (Pos.), the number of genotypes available in cases
(NCA) and controls (NCO), and the major allele frequency in the case-control
sample as a whole (p) are displayed. An insufficient number of informative
families for the FBAT analysis are indicated by NA.
a Genome-wide significance after Bonferroni correction.
missing genotype data, GC might not adequately control

type 1 error, so Rc and RMNI would be preferred. The RWNI

test, which corresponds to the test of Rakovski and Stram,13

has lower power than Rc and RMNI, which is not surprising

in light of the fact that the WQLS test, of which the RWNI is

an extension, was shown16 to have generally lower power

than the MQLS and corrected c2 tests, of which the RMNI

and Rc, respectively, are extensions.

We also assess power to detect association when there is

pedigree structure but no population structure. The simu-

lation is carried out as in the preceding paragraph except

that relationship configuration 2 with no population struc-

ture is simulated. In addition to the tests compared in Table

5, we also calculate power for the MQLS and corrected Ar-

mitage c2 tests, both of which have correct type 1 error

in this setting, provided that the pedigree structure is

known. Estimated power for this setting is given in Table

6. The MQLS and RM tests are the most powerful among

the tests considered. The RM test is able to match the

power of MQLS even though RM uses the estimator Ĵ in

the variance calculation, whereas MQLS uses the true J.

As in the previous power comparison, FBAT has almost

no power in this setting, and the RWNI test has lower power

than all of the other statistics except FBAT. There is no

significant difference in power among Rc, RMNI, GC, and

the corrected Armitage c2 tests. The MQLS and the corrected

Armitage c2 tests have power identical to their correspond-

ing ROADTRIPS extensions, RM and Rc, which illustrates

that power is not compromised by use of the empirical

matrix Ĵ in the variance correction for the ROADTRIPS

statistics.

GAW 15 Rheumatoid Arthritis Data

We apply RM, Rc, GC, and FBAT to the GAW 15 data to test

for association of SNPs with RA. Using a previously re-

ported22 prevalence of 0.8% for RA in people of European

descent, we set both the offset value in FBAT and the prev-

alence value in RM to 0.008. The entries of the empirical

covariance matrix Ĵ and the correction factor for GC are

calculated using SNP data across the autosomal chromo-

somes for the study individuals. Table 7 gives the results

of all tests for those SNPs for which at least one of the tests

has a nominal p value <5.0 3 10�5. For 8 of these 10 SNPs,
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the RM test has the smallest p value among the four tests

used. After Bonferroni correction to adjust for four

different tests of association at each of 9,871 SNPs, the

RM test is significant at the 5% level for 2 SNPs:

snp264363 on chromosome 11 (p ¼ 5.2 3 10�7 uncor-

rected, 0.021 corrected) and snp152076 on chromosome

9 (p ¼ 5.4 3 10�7 uncorrected, 0.021 corrected). The Rc

test is significant at the 5% level for an additional SNP,

snp547632 on chromosome 11 (p ¼ 1.2 3 10�6 uncor-

rected, 0.047 corrected).

A histogram of the estimated self-kinship values (where

the estimated self-kinship value of individual i is taken to

be :5Ĵi,i) of the individuals included in the analysis can

be found in Figure 1. The histogram shows that the

values are not centered around 0.5, which is the self-

kinship value in the absence of population structure and

inbreeding. The self-kinship mean is 0.512, and the

majority of the kinship values (77%) are greater than 0.5.

There are a few pairs of individuals that should have

a kinship coefficient value equal to 0.25 based on the avail-

able pedigree information (i.e., parent-offspring pairs and

sibling pairs), but have estimated kinship coefficient values

close to 0 and thus appear to be unrelated. There are

also a few pairs that are not members of the same pedigree

but have kinship coefficient estimates that indicate

that they are related. Both these phenomena could be

caused by sample switches. An attractive feature of the

ROADTRIPS methods is that they automatically correct

for misspecified relationships in a sample, in addition to

hidden population structure, while simultaneously allow-

ing for different SNPs to have different rates of missing

genotypes.
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Figure 1. Histogram of Estimated Self-
Kinship Coefficient Values for the GAW
15 UK RA Data
The vertical line at 0.5 represents the self-
kinship value in the absence of population
structure and inbreeding.
GAW 14 COGA Data

We apply RM, Rc, and GC to test for association with an

alcoholism-related phenotype in the GAW 14 COGA data.

A previous analysis16 of these data used the MQLS (with k

set to 0.05) and corrected c2 tests; these tests correct for

known pedigree information, but do not make any correc-

tion for unknown structure. In our reanalysis, we compare

the results of the tests with and without the correction for

unknown structure. To make the results comparable, we

set k ¼ 0.05 in the RM test. Table 8 lists SNPs for which at

least one of the RM, Rc, and GC tests has a nominal p value

<1.0 3 10�5. For 11 of these 12 SNPs, the RM test has the

smallest p value among the three tests used. After Bonfer-

roni correction to adjust for three different tests of associa-

tion at each of 10,407 SNPs, the RM test is significant

at the 5% level for 4 SNPs: tsc1750530 on chromosome

16 (p ¼ 2.3 3 10�8 uncorrected, 0.0007 corrected),

tsc0046696 on chromosome 18 (p ¼ 1.4 3 10�7 uncor-

rected, 0.004 corrected), tsc1177811 on chromosome 1
The American Journal of Human Gen
(p ¼ 1.5 3 10�7 uncorrected, 0.005

corrected), and tsc1637642 on chro-

mosome 5 (p ¼ 6.8 3 10�7 uncor-

rected, 0.02 corrected). The Rc test is

significant at the 5% level for an addi-

tional SNP, tsc0571038 on chromo-

some 11 (p ¼ 8.0 3 10�7 uncorrected,

0.025 corrected). Of the 5 SNPs

that were previously16 identified as

genome-wide significant by MQLS or

Wc2
corr

, 4 were also identified by ROAD-

TRIPS. The exception is tsc0057290

on chromosome 18, which was identi-

fied by MQLS and is no longer signifi-

cant after correcting for cryptic

structure. ROADTRIPS identifies an

additional SNP, tsc1637642 on chro-

mosome 5, which was not identified

in the previous analysis. GC did not

identify any significant SNPs. There

are some SNPs in Table 8 that are in

or near genes of interest; the details

have previously been reported.16

A previous analysis32 of these data

with FBAT, in which a slightly larger

sample of individuals was used, de-

tected one SNP with nominal p value

6 3 10�5, which is not significant after

Bonferroni correction for the number

of SNPs tested.
Figure 2 gives a histogram of the estimated self-kinship

coefficient values for the genotyped individuals who

were included in the analysis. The center of the histogram

is shifted from 0.5 (the self-kinship coefficient in the

absence of population structure and inbreeding).

Seventy-one percent of the values are greater than 0.5,

and the mean self-kinship value is 0.506. Just as there

were in the UK RA data, in the COGA data there are

a few pairs of individuals who appear to have misspecified

relationships or be cryptically related. As previously

mentioned, ROADTRIPS adjusts for this in the variance

correction.

Assessment of Computation Time

Using a single processor on a shared machine with eight

quad-core AMD Opteron 8384 25 GHz processors with 64

GB RAM, analysis of 10,156 SNPs from the RA data and

10,810 SNPs from the COGA data with four tests (Rc, RM,

GC, and a ROADTRIPS version of WQLS) took approximately
etics 86, 172–184, February 12, 2010 181



Table 8. COGA Data Results: SNPs with p Value <0.00001 for at
Least One of the Three Tests

Chr Marker Pos. (cM) NCA NCO p

p Value

Rc RM GC

16 tsc1750530 59.8297 644 145 .85 3.6e-4 2.3e-8a 1.6e-3

18 tsc0046696 104.665 459 118 .60 4.0e-1 1.4e-7a 4.8e-1

1 tsc1177811 105.535 587 149 .68 2.9e-2 1.5e-7a 3.4e-2

5 tsc1637642 95.4901 419 159 .84 3.6e-1 6.8e-7a 4.3e-2

11 tsc0571038 95.3968 581 122 .56 8.0e-7a 4.5e-3 5.4e-5

18 tsc0057290 33.9594 497 126 .71 6.1e-2 1.8e-6 5.3e-2

6 tsc0808295 47.1522 681 162 .76 9.4e-1 1.8e-6 9.4e-1

11 tsc0569292 6.78451 455 127 .74 6.0e-1 3.6e-6 5.7e-1

19 tsc1189131 68.94 478 121 .55 7.4e-1 4.2e-6 7.3e-1

3 tsc0175005 158.199 594 152 .82 1.6e-2 4.8e-6 2.2e-2

3 tsc1519933 167.431 515 134 .64 9.5e-2 5.3e-6 7.6e-2

13 tsc0056748 73.9934 530 133 .84 6.5e-1 6.5e-6 6.7e-1

The chromosome (Chr), the name of the marker (Marker), the position of the
marker on the chromosome (Pos.), the number of genotypes available in cases
(NCA) and controls (NCO), and the major allele frequency in the case-control
sample as a whole (p) are displayed.
a Genome-wide significance after Bonferroni correction.
5 and 21 min, respectively. The large difference in

computing time is due to the COGA data having extended

pedigrees and a sample size that is almost twice that of the

RA data. The slowest step is the Cholesky decomposition33

of F (for the calculation of RM and a ROADTRIPS version of

WQLS), which we compute at every SNP because the pattern

of missing genotype data varies. The computing time scales

linearly with the number of SNPs. The speed could presum-

ably be improved, as we have not made serious attempts to

optimize the code.
Discussion

Technological advances in high-density genome scans

have made it feasible to perform case-control association

studies on a genome-wide basis with hundreds of thou-

sands or millions of markers. The observations in these

studies can have several sources of dependence, including

population structure and relatedness among the sampled

individuals, some of which might be known and some

unknown. Failure to properly account for this structure

can lead to spurious association or reduced power. We

develop ROADTRIPS, a case-control association testing

method that simultaneously corrects for both pedigree

and population structure, including admixture, where

some or all of the structure can be unknown. The method

also automatically adjusts for pedigree errors and sample

switches. ROADTRIPS is computationally feasible for the

analysis of genome-screen data with millions of markers,

and it is applicable to association studies with completely
182 The American Journal of Human Genetics 86, 172–184, February
general combinations of family and case-control designs.

The method does not require the genealogy of the

sampled individuals to be known, but when pedigree

data are available, ROADTRIPS can incorporate this infor-

mation to improve power. Our simulation studies indi-

cate that including known pedigree information in

ROADTRIPS (by use of the RM test) provides an overall

and, in some cases, substantial improvement in power

over other available methods. In an analysis of GAW 15

RA data from small UK pedigrees, ROADTRIPS detected

three SNPs that have significant association with a RA

phenotype. In a reanalysis of the GAW 14 COGA data,

ROADTRIPS detected five SNPs that have significant

association with alcoholism, one of which had not

been identified as significant in the previous analysis,

and another SNP identified as significant in the previous

analysis is no longer identified when cryptic structure is

accounted for.

We have shown that when different SNPs have different

rates of missing genotype data, ROADTRIPS is still valid,

whereas GC is not properly calibrated for this setting.

The ROADTRIPS method takes into account both the

structure in the data and the particular missing genotype

pattern at each SNP to construct a valid test. In contrast,

the uniform inflation factor applied to all SNPs by GC

can result in both an increase in type 1 error, due to under-

correction of SNPs with lower rates of missing genotype

data, as well as a loss of power, due to overcorrection of

SNPs with higher rates of missing genotype data. One

approach to dealing with this problem in samples of unre-

lated individuals is to impute missing genotype data.

However, there are special difficulties that arise with the

use of imputation methods in samples with related indi-

viduals and hidden structure. First, Mendelian errors and

incompatible genotypes can be introduced with this

approach, unless the imputation is performed jointly

among related individuals. Second, in samples with

hidden population structure, e.g., samples from admixed

populations, it is often unclear what the reference popula-

tion should be, because an individual’s ancestry at a partic-

ular SNP will generally be unknown. Finally, imputed

genotypes are dependent among relatives, where the

dependence among imputed genotypes differs from the

ordinary dependence among genotypes and is affected

by the type and amount of information available for

each individual for each SNP. Thus, unlike the pedigree

and population structure we consider, the dependence

structure among imputed genotypes for different individ-

uals differs across SNPs. This complex dependence among

imputed genotypes for related individuals would need to

be taken into account in the analysis in order to construct

a valid test. However, to our knowledge, the current gener-

ation of imputation methods gives information only on

the marginal accuracy (e.g., marginal posterior probabili-

ties and not joint posterior probabilities) of imputed geno-

types across individuals, so these methods would not

allow valid assessment of uncertainty in the general
12, 2010
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Figure 2. Histogram of Estimated Self-
Kinship Coefficient Values for the GAW
14 COGA Data
The vertical line at 0.5 represents the self-
kinship value in the absence of population
structure and inbreeding.
setting of case-control association testing with related

individuals.

The ROADTRIPS method uses an estimator of J that is

closely related to the estimated covariance matrix used in

EIGENSTRAT.6 Recently, Choi et al.17 have used a different

estimated kinship matrix in the context of association

testing when pedigree information is missing. The kinship

estimation approach of Choi et al. is suitable for close rela-

tives in the absence of population structure but is not

particularly well suited to accounting for population struc-

ture. To make this statement more precise, we consider the

case of unrelated individuals with population structure

based on the Balding-Nichols model with or without

admixture. In this context, if one assumed that genotypes

at different SNPs were independent with jSijj/N and ps

known and that ss
2 ¼ 0.5ps(1 � ps) held at all but a finite

number of SNPs, then the ROADTRIPS estimator of Jij

would be consistent, whereas the estimator of Choi et al.

would generally be inconsistent. The estimator of Choi
The America
et al. is also substantially more computationally intensive

to calculate than the Ĵ we use in ROADTRIPS.
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Web Resources

The URLs for data presented herein are as follows:

ROADTRIPS source code, http://www.stat.uchicago.edu/~mcpeek/

software/index.html

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/
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